Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Face Quality Assessment (1811.04346v1)

Published 11 Nov 2018 in cs.CV

Abstract: Face image quality is an important factor in facial recognition systems as its verification and recognition accuracy is highly dependent on the quality of image presented. Rejecting low quality images can significantly increase the accuracy of any facial recognition system. In this project, a simple approach is presented to train a deep convolutional neural network to perform end-to-end face image quality assessment. The work is done in 2 stages : First, generation of quality score label and secondly, training a deep convolutional neural network in a supervised manner to predict quality score between 0 and 1. The generation of quality labels is done by comparing the face image with a template of best quality images and then evaluating the normalized score based on the similarity.

Citations (5)

Summary

We haven't generated a summary for this paper yet.