Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quality Classified Image Analysis with Application to Face Detection and Recognition (1801.06445v1)

Published 19 Jan 2018 in cs.CV

Abstract: Motion blur, out of focus, insufficient spatial resolution, lossy compression and many other factors can all cause an image to have poor quality. However, image quality is a largely ignored issue in traditional pattern recognition literature. In this paper, we use face detection and recognition as case studies to show that image quality is an essential factor which will affect the performances of traditional algorithms. We demonstrated that it is not the image quality itself that is the most important, but rather the quality of the images in the training set should have similar quality as those in the testing set. To handle real-world application scenarios where images with different kinds and severities of degradation can be presented to the system, we have developed a quality classified image analysis framework to deal with images of mixed qualities adaptively. We use deep neural networks first to classify images based on their quality classes and then design a separate face detector and recognizer for images in each quality class. We will present experimental results to show that our quality classified framework can accurately classify images based on the type and severity of image degradations and can significantly boost the performances of state-of-the-art face detector and recognizer in dealing with image datasets containing mixed quality images.

Citations (12)

Summary

We haven't generated a summary for this paper yet.