Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Comprehensive Bayesian Discrimination of the Simple Stellar Population Model, Star Formation History and Dust Attenuation Law in the Spectral Energy Distribution Modeling of Galaxies (1811.04180v1)

Published 10 Nov 2018 in astro-ph.GA

Abstract: When modeling and interpreting the spectral energy distributions (SEDs) of galaxies, the simple stellar population (SSP) model, star formation history (SFH) and dust attenuation law (DAL) are three of the most important components. However, each of them carries significant uncertainties which have seriously limited our ability to reliably recover the physical properties of galaxies from the analysis of their SEDs. In this paper, we present a Bayesian framework to deal with these uncertain components simultaneously. Based on the Bayesian evidence, a quantitative implement of the principle of Occam's razor, the method allows a more objective and quantitative discrimination among the different assumptions about these uncertain components. With a Ks-selected sample of 5467 low-redshift (mostly with $z\lesssim 1$) galaxies in the COSMOS/UltraVISTA field and classified into passively evolving galaxies (PEGs) and star-forming galaxies (SFGs) with UVJ diagram, we present a Bayesian discrimination of a set of 16 SSP models from five research groups (BC03 and CB07, M05, GALEV, Yunnan-II, BPASS V2.0), five forms of SFH (Burst, Constant, Exp-dec, Exp-inc, Delayed-$\tau$), and four kinds of DAL (Calzetti law, MW, LMC, SMC). We show that the results obtained with the method are either obvious or understandable in the context of galaxy physics. We conclude that the Bayesian model comparison method, especially that for a sample of galaxies, is very useful for discriminating the different assumptions in the SED modeling of galaxies. The new version of the BayeSED code, which is used in this work, is publicly available at https://bitbucket.org/hanyk/bayesed/.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube