Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Cusp Universality for Random Matrices II: The Real Symmetric Case (1811.04055v5)

Published 9 Nov 2018 in math.PR, math-ph, and math.MP

Abstract: We prove that the local eigenvalue statistics of real symmetric Wigner-type matrices near the cusp points of the eigenvalue density are universal. Together with the companion paper [arXiv:1809.03971], which proves the same result for the complex Hermitian symmetry class, this completes the last remaining case of the Wigner-Dyson-Mehta universality conjecture after bulk and edge universalities have been established in the last years. We extend the recent Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp regime using the optimal local law from [arXiv:1809.03971] and the accurate local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752]. We also present a PDE-based method to improve the estimate on eigenvalue rigidity via the maximum principle of the heat flow related to the Dyson Brownian motion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.