Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Primal Decomposition Method with Suboptimality Bounds for Distributed Mixed-Integer Linear Programming (1811.03657v1)

Published 8 Nov 2018 in cs.SY, cs.DC, cs.MA, and math.OC

Abstract: In this paper we deal with a network of agents seeking to solve in a distributed way Mixed-Integer Linear Programs (MILPs) with a coupling constraint (modeling a limited shared resource) and local constraints. MILPs are NP-hard problems and several challenges arise in a distributed framework, so that looking for suboptimal solutions is of interest. To achieve this goal, the presence of a linear coupling calls for tailored decomposition approaches. We propose a fully distributed algorithm based on a primal decomposition approach and a suitable tightening of the coupling constraints. Agents repeatedly update local allocation vectors, which converge to an optimal resource allocation of an approximate version of the original problem. Based on such allocation vectors, agents are able to (locally) compute a mixed-integer solution, which is guaranteed to be feasible after a sufficiently large time. Asymptotic and finite-time suboptimality bounds are established for the computed solution. Numerical simulations highlight the efficacy of the proposed methodology.

Citations (13)

Summary

We haven't generated a summary for this paper yet.