Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Primal Decomposition for Large-Scale MILPs (2010.14446v2)

Published 27 Oct 2020 in math.OC, cs.SY, and eess.SY

Abstract: This paper deals with a distributed Mixed-Integer Linear Programming (MILP) set-up arising in several control applications. Agents of a network aim to minimize the sum of local linear cost functions subject to both individual constraints and a linear coupling constraint involving all the decision variables. A key, challenging feature of the considered set-up is that some components of the decision variables must assume integer values. The addressed MILPs are NP-hard, nonconvex and large-scale. Moreover, several additional challenges arise in a distributed framework due to the coupling constraint, so that feasible solutions with guaranteed suboptimality bounds are of interest. We propose a fully distributed algorithm based on a primal decomposition approach and an appropriate tightening of the coupling constraint. The algorithm is guaranteed to provide feasible solutions in finite time. Moreover, asymptotic and finite-time suboptimality bounds are established for the computed solution. Montecarlo simulations highlight the extremely low suboptimality bounds achieved by the algorithm.

Citations (18)

Summary

We haven't generated a summary for this paper yet.