Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo's lemma (1811.02691v1)

Published 6 Nov 2018 in math.AP and math.FA

Abstract: We prove a family of Sobolev inequalities of the form $$ \Vert u \Vert_{L{\frac{n}{n-1}, 1} (\mathbb{R}n,V)} \le \Vert A (D) u \Vert_{L1 (\mathbb{R}n,E)} $$ where $A (D) : C\infty_c (\mathbb{R}n, V) \to C\infty_c (\mathbb{R}n, E)$ is a vector first-order homogeneous linear differential operator with constant coefficients, $u$ is a vector field on $\mathbb{R}n$ and $L{\frac{n}{n - 1}, 1} (\mathbb{R}{n})$ is a Lorentz space. These new inequalities imply in particular the extension of the classical Gagliardo-Nirenberg inequality to Lorentz spaces originally due to Alvino and a sharpening of an inequality in terms of the deformation operator by Strauss (Korn-Sobolev inequality) on the Lorentz scale. The proof relies on a nonorthogonal application of the Loomis--Whitney inequality and Gagliardo's lemma.

Summary

We haven't generated a summary for this paper yet.