Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What evidence does deep learning model use to classify Skin Lesions? (1811.01051v3)

Published 2 Nov 2018 in cs.CV and q-bio.QM

Abstract: Melanoma is a type of skin cancer with the most rapidly increasing incidence. Early detection of melanoma using dermoscopy images significantly increases patients' survival rate. However, accurately classifying skin lesions by eye, especially in the early stage of melanoma, is extremely challenging for the dermatologists. Hence, the discovery of reliable biomarkers will be meaningful for melanoma diagnosis. Recent years, the value of deep learning empowered computer-assisted diagnose has been shown in biomedical imaging based decision making. However, much research focuses on improving disease detection accuracy but not exploring the evidence of pathology. In this paper, we propose a method to interpret the deep learning classification findings. Firstly, we propose an accurate neural network architecture to classify skin lesions. Secondly, we utilize a prediction difference analysis method that examines each patch on the image through patch-wised corrupting to detect the biomarkers. Lastly, we validate that our biomarker findings are corresponding to the patterns in the literature. The findings can be significant and useful to guide clinical diagnosis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiaoxiao Li (144 papers)
  2. Junyan Wu (8 papers)
  3. Eric Z. Chen (32 papers)
  4. Hongda Jiang (7 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.