Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive MCMC for Generalized Method of Moments with Many Moment Conditions (1811.00722v5)

Published 2 Nov 2018 in stat.CO

Abstract: A generalized method of moments (GMM) estimator is unreliable for a large number of moment conditions, that is, it is comparable, or larger than the sample size. While classical GMM literature proposes several provisions to this problem, its Bayesian counterpart (i.e., Bayesian inference using a GMM criterion as a quasi-likelihood) almost totally ignores it. This study bridges this gap by proposing an adaptive Markov Chain Monte Carlo (MCMC) approach to a GMM inference with many moment conditions. Particularly, this study focuses on the adaptive tuning of a weighting matrix on the fly. Our proposal consists of two elements. The first is the use of the nonparametric eigenvalue-regularized precision matrix estimator, which contributes to numerical stability. The second is the random update of a weighting matrix, which substantially reduces computational cost, while maintaining the accuracy of the estimation. We then present a simulation study and real data application to compare the performance of the proposed approach with existing approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)