Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Efficient Multi-Domain Dictionary Learning with GANs (1811.00274v1)

Published 1 Nov 2018 in cs.CV and cs.LG

Abstract: In this paper, we propose the multi-domain dictionary learning (MDDL) to make dictionary learning-based classification more robust to data representing in different domains. We use adversarial neural networks to generate data in different styles, and collect all the generated data into a miscellaneous dictionary. To tackle the dictionary learning with many samples, we compute the weighting matrix that compress the miscellaneous dictionary from multi-sample per class to single sample per class. We show that the time complexity solving the proposed MDDL with weighting matrix is the same as solving the dictionary with single sample per class. Moreover, since the weighting matrix could help the solver rely more on the training data, which possibly lie in the same domain with the testing data, the classification could be more accurate.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube