Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Affine Jump-Diffusions: Stochastic Stability and Limit Theorems (1811.00122v1)

Published 31 Oct 2018 in q-fin.MF and math.PR

Abstract: Affine jump-diffusions constitute a large class of continuous-time stochastic models that are particularly popular in finance and economics due to their analytical tractability. Methods for parameter estimation for such processes require ergodicity in order establish consistency and asymptotic normality of the associated estimators. In this paper, we develop stochastic stability conditions for affine jump-diffusions, thereby providing the needed large-sample theoretical support for estimating such processes. We establish ergodicity for such models by imposing a `strong mean reversion' condition and a mild condition on the distribution of the jumps, i.e. the finiteness of a logarithmic moment. Exponential ergodicity holds if the jumps have a finite moment of a positive order. In addition, we prove strong laws of large numbers and functional central limit theorems for additive functionals for this class of models.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.