Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Inception-Residual Block based Neural Network for Thermal Image Denoising (1810.13169v2)

Published 31 Oct 2018 in cs.CV

Abstract: Thermal cameras show noisy images due to their limited thermal resolution, especially for the scenes of a low temperature difference. In order to deal with a noise problem, this paper proposes a novel neural network architecture with repeatable denoising inception-residual blocks(DnIRB) for noise learning. Each DnIRB has two sub-blocks with difference receptive fields and one shortcut connection to prevent a vanishing gradient problem. The proposed approach is tested for thermal images. The experimental results indicate that the proposed approach shows the best SQNR performance and reasonable processing time compared with state-of-the-art denoising methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.