Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Uncertainty quantification in Eulerian-Lagrangian simulations of (point-)particle-laden flows with data-driven and empirical forcing models (1810.13047v1)

Published 29 Oct 2018 in physics.comp-ph

Abstract: An uncertainty quantification framework is developed for Eulerian-Lagrangian models of particle-laden flows, where the fluid is modeled through a system of partial differential equations in the Eulerian frame and inertial particles are traced as points in the Lagrangian frame. The source of uncertainty in such problems is the particle forcing, which is determined empirically or computationally with high-fidelity methods (data-driven). The framework relies on the averaging of the deterministic governing equations with the stochastic forcing and allows for an estimation of the first and second moment of the quantities of interest. Via comparison with Monte Carlo simulations, it is demonstrated that the moment equations accurately predict the uncertainty for problems whose Eulerian dynamics are either governed by the linear advection equation or the compressible Euler equations. In areas of singular particle interfaces and shock singularities significant uncertainty is generated. An investigation into the effect of the numerical methods shows that low-dissipative higher-order methods are necessary to capture numerical singularities (shock discontinuities, singular source terms, particle clustering) with low diffusion in the propagation of uncertainty.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.