Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Counting in Language with RNNs (1810.12411v2)

Published 29 Oct 2018 in cs.LG, cs.NE, and stat.ML

Abstract: In this paper we examine a possible reason for the LSTM outperforming the GRU on LLMing and more specifically machine translation. We hypothesize that this has to do with counting. This is a consistent theme across the literature of long term dependence, counting, and LLMing for RNNs. Using the simplified forms of language -- Context-Free and Context-Sensitive Languages -- we show how exactly the LSTM performs its counting based on their cell states during inference and why the GRU cannot perform as well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.