Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Limits of Residual Neural Networks (1810.11741v4)

Published 28 Oct 2018 in math.CA

Abstract: Neural networks have been very successful in many applications; we often, however, lack a theoretical understanding of what the neural networks are actually learning. This problem emerges when trying to generalise to new data sets. The contribution of this paper is to show that, for the residual neural network model, the deep layer limit coincides with a parameter estimation problem for a nonlinear ordinary differential equation. In particular, whilst it is known that the residual neural network model is a discretisation of an ordinary differential equation, we show convergence in a variational sense. This implies that optimal parameters converge in the deep layer limit. This is a stronger statement than saying for a fixed parameter the residual neural network model converges (the latter does not in general imply the former). Our variational analysis provides a discrete-to-continuum $\Gamma$-convergence result for the objective function of the residual neural network training step to a variational problem constrained by a system of ordinary differential equations; this rigorously connects the discrete setting to a continuum problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube