Finiteness dimensions and cofiniteness of generalized local cohomology modules (1810.10223v2)
Abstract: Let $R$ be a commutative Noetherian ring with non-zero identity, $\mathfrak{a}$ and ideal of $R$, $M$ a finite $R$--module, and $n$ a non-negative integer. In this paper, for an arbitrary $R$--module $X$ which is not necessarily finite, we study the finiteness dimension $f_\mathfrak{a}(M,X)$ and the $n$-th finiteness dimension $fn_\mathfrak{a}(M,X)$ of $M$ and $X$ with respect to $\mathfrak{a}$. Assume that $\operatorname{Ext}{i}_{R}(R/\mathfrak{a},X)$ is finite for all $i\leq f2_\mathfrak{a}(M,X)$ (resp. $i< f1_\mathfrak{a}(M,X)$). We show that $\operatorname{H}{i}_{\mathfrak{a}}(M,X)$ is $\mathfrak{a}$--cofinite for all $i< f2_\mathfrak{a}(M,X)$ (resp. $i< f1_\mathfrak{a}(M,X)$) and $\operatorname{Ass}{R}(\operatorname{H}{f2\mathfrak{a}(M,X)}{\mathfrak{a}}(M,X))$ (resp. if $\operatorname{Ext}{f1\mathfrak{a}(M,X)}{R}(R/\mathfrak{a},X)$ is finite, then $\operatorname{Ass}{R}(\operatorname{H}{f1_\mathfrak{a}(M,X)}_{\mathfrak{a}}(M,X))$) is finite.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.