Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the Quadratic Transportation Metric in Near-Linear Time (1810.10046v2)

Published 23 Oct 2018 in cs.DS and math.OC

Abstract: Computing the quadratic transportation metric (also called the $2$-Wasserstein distance or root mean square distance) between two point clouds, or, more generally, two discrete distributions, is a fundamental problem in machine learning, statistics, computer graphics, and theoretical computer science. A long line of work has culminated in a sophisticated geometric algorithm due to Agarwal and Sharathkumar in 2014, which runs in time $\tilde{O}(n{3/2})$, where $n$ is the number of points. However, obtaining faster algorithms has proven difficult since the $2$-Wasserstein distance is known to have poor sketching and embedding properties, which limits the effectiveness of geometric approaches. In this paper, we give an extremely simple deterministic algorithm with $\tilde{O}(n)$ runtime by using a completely different approach based on entropic regularization, approximate Sinkhorn scaling, and low-rank approximations of Gaussian kernel matrices. We give explicit dependence of our algorithm on the dimension and precision of the approximation.

Citations (22)

Summary

We haven't generated a summary for this paper yet.