Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Direct $\tilde{O}(1/ε)$ Iteration Parallel Algorithm for Optimal Transport (1906.00618v1)

Published 3 Jun 2019 in cs.DS, cs.LG, math.OC, stat.CO, and stat.ML

Abstract: Optimal transportation, or computing the Wasserstein or ``earth mover's'' distance between two distributions, is a fundamental primitive which arises in many learning and statistical settings. We give an algorithm which solves this problem to additive $\epsilon$ with $\tilde{O}(1/\epsilon)$ parallel depth, and $\tilde{O}\left(n2/\epsilon\right)$ work. Barring a breakthrough on a long-standing algorithmic open problem, this is optimal for first-order methods. Blanchet et. al. '18, Quanrud '19 obtained similar runtimes through reductions to positive linear programming and matrix scaling. However, these reduction-based algorithms use complicated subroutines which may be deemed impractical due to requiring solvers for second-order iterations (matrix scaling) or non-parallelizability (positive LP). The fastest practical algorithms run in time $\tilde{O}(\min(n2 / \epsilon2, n{2.5} / \epsilon))$ (Dvurechensky et. al. '18, Lin et. al. '19). We bridge this gap by providing a parallel, first-order, $\tilde{O}(1/\epsilon)$ iteration algorithm without worse dependence on dimension, and provide preliminary experimental evidence that our algorithm may enjoy improved practical performance. We obtain this runtime via a primal-dual extragradient method, motivated by recent theoretical improvements to maximum flow (Sherman '17).

Citations (22)

Summary

We haven't generated a summary for this paper yet.