Prime decomposition of modular tensor categories of local modules of Type D (1810.09057v1)
Abstract: Let $\mathcal{C}(\mathfrak{g},k)$ be the unitary modular tensor categories arising from the representation theory of quantum groups at roots of unity for arbitrary simple finite-dimensional complex Lie algebra $\mathfrak{g}$ and positive integer levels $k$. Here we classify nondegenerate fusion subcategories of the modular tensor categories of local modules $\mathcal{C}(\mathfrak{g},k)R0$ where $R$ is the regular algebra of Tannakian $\text{Rep}(H)\subset\mathcal{C}(\mathfrak{g},k)\text{pt}$. For $\mathfrak{g}=\mathfrak{so}5$ we describe the decomposition of $\mathcal{C}(\mathfrak{g},k)_R0$ into prime factors explicitly and as an application we classify relations in the Witt group of nondegenerately braided fusion categories generated by the equivalency classes of $\mathcal{C}(\mathfrak{so}_5,k)$ and $\mathcal{C}(\mathfrak{g}_2,k)$ for $k\in\mathbb{Z}{\geq1}$.