2000 character limit reached
Pre-modular fusion categories of global dimensions $p^2$ (2209.04169v1)
Published 9 Sep 2022 in math.QA and math.CT
Abstract: Let $p\geq5$ be a prime, we show that a non-pointed modular fusion category $\mathcal{C}$ is Grothendieck equivalent to $\mathcal{C}(\mathfrak{sl}_2,2(p-1))_A0$ if and only if $\dim(\mathcal{C})=p\cdot u$, where $u$ is a certain totally positive algebraic unit and $A$ is the regular algebra of the Tannakian subcategory $\text{Rep}(\mathbb{Z}_2)\subseteq\mathcal{C}(\mathfrak{sl}_2,2(p-1))$. As a direct corollary, we classify non-simple modular fusion categories of global dimensions $p2$.