Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Named Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings (1810.08732v1)

Published 20 Oct 2018 in cs.CL, cs.LG, and stat.ML

Abstract: Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervised method for learning continuous representations of words in vector space. We made use of these obtained word embeddings, together with language independent features that are engineered to work better on informal text types, for generating a Turkish NER system on microblog texts. We evaluated our Turkish NER system on Twitter messages and achieved better F-score performances than the published results of previously proposed NER systems on Turkish tweets. Since we did not employ any language dependent features, we believe that our method can be easily adapted to microblog texts in other morphologically rich languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Eda Okur (20 papers)
  2. Hakan Demir (2 papers)
  3. Arzucan Özgür (24 papers)
Citations (11)