Geometric stabilisation via p-adic integration (1810.06739v2)
Abstract: In this article we give a new proof of Ng^o's Geometric Stabilisation Theorem, which implies the Fundamental Lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme $G$ to the cohomology of Hitchin fibres for the endoscopy groups $H_{\kappa}$. Our proof avoids the Decomposition and Support Theorem, instead the argument is based on results for $p$-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of $G$-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.