Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Effects of memory on spreading processes in non-Markovian temporal networks (1810.05240v1)

Published 9 Oct 2018 in physics.soc-ph and physics.data-an

Abstract: Many biological, social and man-made systems are better described in terms of temporal networks, i.e. networks whose links are only present at certain points in time, rather than by static ones. In particular, it has been found that non-Markovianity is a necessary ingredient to capture the non-trivial temporal patterns of real-world networks. However, our understanding of how memory can affect the properties of dynamical processes taking place over temporal networks is still very limited, being especially constrained to the case of short-term memory. Here, by introducing a model for temporal networks in which we can precisely control the link density and the strength and length of memory for each link, we unveil the role played by memory on the dynamics of epidemic spreading processes. Surprisingly, we find that the average spreading time in our temporal networks is often non-monotonically dependent on the length of the memory, and that the optimal value of the memory length which maximizes the spreading time depends on the strength of the memory and on the density of links in the network. Through analytical arguments we then explore the effect that changing the number and length of network paths connecting any two nodes has on the value of optimal memory.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube