Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Noisy Evolutionary Optimization When Sampling Fails (1810.05045v2)

Published 11 Oct 2018 in cs.NE and math.OC

Abstract: In noisy evolutionary optimization, sampling is a common strategy to deal with noise. By the sampling strategy, the fitness of a solution is evaluated multiple times (called \emph{sample size}) independently, and its true fitness is then approximated by the average of these evaluations. Most previous studies on sampling are empirical, and the few theoretical studies mainly showed the effectiveness of sampling with a sufficiently large sample size. In this paper, we theoretically examine what strategies can work when sampling with any fixed sample size fails. By constructing a family of artificial noisy examples, we prove that sampling is always ineffective, while using parent or offspring populations can be helpful on some examples. We also construct an artificial noisy example to show that when using neither sampling nor populations is effective, a tailored adaptive sampling (i.e., sampling with an adaptive sample size) strategy can work. These findings may enhance our understanding of sampling to some extent, but future work is required to validate them in natural situations.

Citations (16)

Summary

We haven't generated a summary for this paper yet.