Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal sampling for least squares approximation with general dictionaries (2407.07814v2)

Published 10 Jul 2024 in math.NA and cs.NA

Abstract: We consider the problem of approximating an unknown function in a nonlinear model class from point evaluations. When obtaining these point evaluations is costly, minimising the required sample size becomes crucial. Recently, an increasing focus has been on employing adaptive sampling strategies to achieve this. These strategies are based on linear spaces related to the nonlinear model class, for which the optimal sampling measures are known. However, the resulting optimal sampling measures depend on an orthonormal basis of the linear space, which is known rarely. Consequently, sampling from these measures is challenging in practice. This manuscript presents a sampling strategy that iteratively refines an estimate of the optimal sampling measure by updating it based on previously drawn samples. This strategy can be performed offline and does not require evaluations of the sought function. We establish convergence and illustrate the practical performance through numerical experiments. Comparing the presented approach with standard Monte Carlo sampling demonstrates a significant reduction in the number of samples required to achieve a good estimation of an orthonormal basis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.