Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Current with "wrong" sign and phase transitions (1810.04639v1)

Published 10 Oct 2018 in math-ph and math.MP

Abstract: We prove that under certain conditions, phase separation is enough to sustain a regime in which current flows along the concentration gradient, a phenomenon which is known in the literature as \textit{uphill diffusion}. The model we consider here is a version of that proposed in [G. B. Giacomin, J. L. Lebowitz, Phase segregation dynamics in particle system with long range interactions, Journal of Statistical Physics 87(1) (1997): 37-61], which is the continuous mesoscopic limit of a $1d$ discrete Ising chain with a Kac potential. The magnetization profile lies in the interval $\left[-\varepsilon{-1},\varepsilon{-1}\right]$, $\varepsilon>0$, staying in contact at the boundaries with infinite reservoirs of fixed magnetization $\pm\mu$, $\mu\in(m*\left(\beta\right),1)$, where $m*\left(\beta\right)=\sqrt{1-1/\beta}$, $\beta>1$ representing the inverse temperature. At last, an external field of Heaviside-type of intensity $\kappa>0$ is introduced. According to the axiomatic non-equilibrium theory, we derive from the mesoscopic free energy functional the corresponding stationary equation and prove the existence of a solution, which is antisymmetric with respect to the origin and discontinuous in $x=0$, provided $\varepsilon$ is small enough. When $\mu$ is metastable, the current is positive and bounded from below by a positive constant independent of $\kappa$, this meaning that both phase transition as well as external field contributes to uphill diffusion, which is a regime that actually survives when the external bias is removed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)