Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

An inverse random source problem in a stochastic fractional diffusion equation (1810.03144v1)

Published 7 Oct 2018 in math.AP

Abstract: In this work the authors consider an inverse source problem in the following stochastic fractional diffusion equation $$\partial_t\alpha u(x,t)+\mathcal{A} u(x,t)=f(x)h(t)+g(x) \dot{\mathbb{W}}(t).$$ The interested inverse problem is to reconstruct $f(x)$ and $g(x)$ by the statistics of the final time data $u(x,T).$ Some direct problem results are proved at first, such as the existence, uniqueness, representation and regularity of the solution. Then the reconstruction scheme for $f$ and $g$ is given. To tackle the ill-posedness, the Tikhonov regularization is adopted. Finally we give a regularized reconstruction algorithm and some numerical results are displayed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.