Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse Filtered Nerves (1810.02149v2)

Published 4 Oct 2018 in math.AT

Abstract: Given a point cloud $P$ in Euclidean space and a positive parameter $t$ we can consider the $t$-neighborhood $P{t}$ of $P$ consisting of points at distance less than $t$ to $P$. Homology of $P{t}$ gives information about components, holes, voids etc. in $P{t}$. The idea of persistent homology is that it may happen that we are interested in some of holes in the spaces $Pt$ that are not detected simultaneously in homology for a single value of $t$, but where each of these holes is detected for $t$ in a wide range. When the dimension of the ambient Euclidean space is small, persistent homology is efficiently computed by the $\alpha$-complex. For dimension bigger than three this becomes resource consuming. Don Sheehy discovered that there exists a filtered simplicial complex whose size depends linearly on the cardinality of $P$ and whose persistent homology is an approximation of the persistent homology of the filtered topological space ${P{t}}_{t \ge 0}$. In this paper we pursue Sheehy's sparsification approach and give a more general approach to sparsification of filtered simplicial complexes computing the homology of filtered spaces of the form ${P{t}}_{t \ge 0}$ and more generally to sparsification of filtered Dowker nerves. To our best knowledge, this is the first approach to sparsification of general Dowker nerves.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.