Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Location of zeros for the partition function of the Ising model on bounded degree graphs (1810.01699v3)

Published 3 Oct 2018 in math.CO, cs.DS, math-ph, math.CV, math.DS, and math.MP

Abstract: The seminal Lee-Yang theorem states that for any graph the zeros of the partition function of the ferromagnetic Ising model lie on the unit circle in $\mathbb C$. In fact the union of the zeros of all graphs is dense on the unit circle. In this paper we study the location of the zeros for the class of graphs of bounded maximum degree $d\geq 3$, both in the ferromagnetic and the anti-ferromagnetic case. We determine the location exactly as a function of the inverse temperature and the degree $d$. An important step in our approach is to translate to the setting of complex dynamics and analyze a dynamical system that is naturally associated to the partition function.

Citations (34)

Summary

We haven't generated a summary for this paper yet.