Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Challenges of Using Text Classifiers for Causal Inference (1810.00956v1)

Published 1 Oct 2018 in cs.CL and cs.LG

Abstract: Causal understanding is essential for many kinds of decision-making, but causal inference from observational data has typically only been applied to structured, low-dimensional datasets. While text classifiers produce low-dimensional outputs, their use in causal inference has not previously been studied. To facilitate causal analyses based on language data, we consider the role that text classifiers can play in causal inference through established modeling mechanisms from the causality literature on missing data and measurement error. We demonstrate how to conduct causal analyses using text classifiers on simulated and Yelp data, and discuss the opportunities and challenges of future work that uses text data in causal inference.

Citations (68)

Summary

We haven't generated a summary for this paper yet.