Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data science is science's second chance to get causal inference right: A classification of data science tasks (1804.10846v6)

Published 28 Apr 2018 in stat.ML and cs.LG

Abstract: Causal inference from observational data is the goal of many data analyses in the health and social sciences. However, academic statistics has often frowned upon data analyses with a causal objective. The introduction of the term "data science" provides a historic opportunity to redefine data analysis in such a way that it naturally accommodates causal inference from observational data. Like others before, we organize the scientific contributions of data science into three classes of tasks: Description, prediction, and counterfactual prediction (which includes causal inference). An explicit classification of data science tasks is necessary to discuss the data, assumptions, and analytics required to successfully accomplish each task. We argue that a failure to adequately describe the role of subject-matter expert knowledge in data analysis is a source of widespread misunderstandings about data science. Specifically, causal analyses typically require not only good data and algorithms, but also domain expert knowledge. We discuss the implications for the use of data science to guide decision-making in the real world and to train data scientists.

Citations (33)

Summary

We haven't generated a summary for this paper yet.