Universality of Toda equation in ${\cal N}=2$ superconformal field theories (1810.00840v3)
Abstract: We show that extremal correlators in all Lagrangian ${\cal N}=2$ superconformal field theories with a simple gauge group are governed by the same universal Toda system of equations, which dictates the structure of extremal correlators to all orders in the perturbation series. A key point is the construction of a convenient orthogonal basis for the chiral ring, by arranging towers of operators in order of increasing dimension, which has the property that the associated two-point functions satisfy decoupled Toda chain equations. We explicitly verify this in all known SCFTs based on $\mathrm{SU}(N)$ gauge groups as well as in superconformal QCD based on orthogonal and symplectic groups. As a by-product, we find a surprising non-renormalization property for the ${\cal N}=2$ $\mathrm{SU}(N)$ SCFT with one hypermultiplet in the rank-2 symmetric representation and one hypermultiplet in the rank-2 antisymmetric representation, where the two-loop terms of a large class of supersymmetric observables identically vanish.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.