Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Penalized Parabolic Relaxation for Optimal Power Flow Problem (1809.09809v1)

Published 26 Sep 2018 in math.OC

Abstract: This paper is concerned with optimal power flow (OPF), which is the problem of optimizing the transmission of electricity in power systems. Our main contributions are as follows: (i) we propose a novel parabolic relaxation, which transforms non-convex OPF problems into convex quadratically-constrained quadratic programs (QCQPs) and can serve as an alternative to the common practice semidefinite programming (SDP) and second-order cone programming (SOCP) relaxations, (ii) we propose a penalization technique which is compatible with the SDP, SOCP, and parabolic relaxations and guarantees the recovery of feasible solutions for OPF, under certain assumptions. The proposed penalized convex relaxation can be used sequentially to find feasible and near-globally optimal solutions for challenging instances of OPF. Extensive numerical experiments on small and large-scale benchmark systems corroborate the efficacy of the proposed approach. By solving a few rounds of penalized convex relaxation, fully feasible solutions are obtained for benchmark test cases from [1]-[3] with as many as 13659 buses. In all cases, the solutions obtained are not more than 0.32% worse than the best-known solutions.

Summary

We haven't generated a summary for this paper yet.