Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Relaxations of Optimal Power Flow Problems: An Illustrative Example (1510.04330v1)

Published 14 Oct 2015 in math.OC

Abstract: Recently, there has been significant interest in convex relaxations of the optimal power flow (OPF) problem. A semidefinite programming (SDP) relaxation globally solves many OPF problems. However, there exist practical problems for which the SDP relaxation fails to yield the global solution. Conditions for the success or failure of the SDP relaxation are valuable for determining whether the relaxation is appropriate for a given OPF problem. To move beyond existing conditions, which only apply to a limited class of problems, a typical conjecture is that failure of the SDP relaxation can be related to physical characteristics of the system. By presenting an example OPF problem with two equivalent formulations, this paper demonstrates that physically based conditions cannot universally explain algorithm behavior. The SDP relaxation fails for one formulation but succeeds in finding the global solution to the other formulation. Since these formulations represent the same system, success (or otherwise) of the SDP relaxation must involve factors beyond just the network physics. The lack of universal physical conditions for success of the SDP relaxation motivates the development of tighter convex relaxations capable of solving a broader class of problems. Tools from polynomial optimization theory provide a means of developing tighter relaxations. We use the example OPF problem to illustrate relaxations from the Lasserre hierarchy for polynomial optimization and a related "mixed semidefinite/second-order cone programming" hierarchy.

Citations (55)

Summary

We haven't generated a summary for this paper yet.