Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified recurrent neural network for many feature types (1809.08717v1)

Published 24 Sep 2018 in stat.ML and cs.LG

Abstract: There are time series that are amenable to recurrent neural network (RNN) solutions when treated as sequences, but some series, e.g. asynchronous time series, provide a richer variation of feature types than current RNN cells take into account. In order to address such situations, we introduce a unified RNN that handles five different feature types, each in a different manner. Our RNN framework separates sequential features into two groups dependent on their frequency, which we call sparse and dense features, and which affect cell updates differently. Further, we also incorporate time features at the sequential level that relate to the time between specified events in the sequence and are used to modify the cell's memory state. We also include two types of static (whole sequence level) features, one related to time and one not, which are combined with the encoder output. The experiments show that the modeling framework proposed does increase performance compared to standard cells.

Citations (2)

Summary

We haven't generated a summary for this paper yet.