On the calculation of the stress tensor in real-space Kohn-Sham Density Functional Theory (1809.08157v1)
Abstract: We present an accurate and efficient formulation of the stress tensor for real-space Kohn-Sham Density Functional Theory (DFT) calculations. Specifically, while employing a local formulation of the electrostatics, we derive a linear-scaling expression for the stress tensor that is applicable to simulations with unit cells of arbitrary symmetry, semilocal exchange-correlation functionals, and Brillouin zone integration. In particular, we rewrite the contributions arising from the self energy and the nonlocal pseudopotential energy to make them amenable to the real-space finite-difference discretization, achieving up to three orders of magnitude improvement in the accuracy of the computed stresses. Using examples representative of static and dynamic calculations, we verify the accuracy and efficiency of the proposed formulation. In particular, we demonstrate high rates of convergence with spatial discretization, consistency between the computed energy and stress tensor, and very good agreement with reference planewave results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.