Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On learning an interpreted language with recurrent models (1809.04128v3)

Published 11 Sep 2018 in cs.CL

Abstract: Can recurrent neural nets, inspired by human sequential data processing, learn to understand language? We construct simplified datasets reflecting core properties of natural language as modeled in formal syntax and semantics: recursive syntactic structure and compositionality. We find LSTM and GRU networks to generalise to compositional interpretation well, but only in the most favorable learning settings, with a well-paced curriculum, extensive training data, and left-to-right (but not right-to-left) composition.

Citations (3)

Summary

We haven't generated a summary for this paper yet.