Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Factorized Q-Learning for Large-Scale Multi-Agent Systems (1809.03738v4)

Published 11 Sep 2018 in cs.MA

Abstract: Deep Q-learning has achieved significant success in single-agent decision making tasks. However, it is challenging to extend Q-learning to large-scale multi-agent scenarios, due to the explosion of action space resulting from the complex dynamics between the environment and the agents. In this paper, we propose to make the computation of multi-agent Q-learning tractable by treating the Q-function (w.r.t. state and joint-action) as a high-order high-dimensional tensor and then approximate it with factorized pairwise interactions. Furthermore, we utilize a composite deep neural network architecture for computing the factorized Q-function, share the model parameters among all the agents within the same group, and estimate the agents' optimal joint actions through a coordinate descent type algorithm. All these simplifications greatly reduce the model complexity and accelerate the learning process. Extensive experiments on two different multi-agent problems demonstrate the performance gain of our proposed approach in comparison with strong baselines, particularly when there are a large number of agents.

Citations (63)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.