Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

The moduli space of matroids (1809.03542v2)

Published 10 Sep 2018 in math.AG

Abstract: In the first part of the paper, we clarify the connections between several algebraic objects appearing in matroid theory: both partial fields and hyperfields are fuzzy rings, fuzzy rings are tracts, and these relations are compatible with the respective matroid theories. Moreover, fuzzy rings are ordered blueprints and lie in the intersection of tracts with ordered blueprints; we call the objects of this intersection pastures. In the second part, we construct moduli spaces for matroids over pastures. We show that, for any non-empty finite set $E$, the functor taking a pasture $F$ to the set of isomorphism classes of rank-$r$ $F$-matroids on $E$ is representable by an ordered blue scheme $Mat(r,E)$, the moduli space of rank-$r$ matroids on $E$. In the third part, we draw conclusions on matroid theory. A classical rank-$r$ matroid $M$ on $E$ corresponds to a $\mathbb{K}$-valued point of $Mat(r,E)$ where $\mathbb{K}$ is the Krasner hyperfield. Such a point defines a residue pasture $k_M$, which we call the universal pasture of $M$. We show that for every pasture $F$, morphisms $k_M\to F$ are canonically in bijection with $F$-matroid structures on $M$. An analogous weak universal pasture $k_Mw$ classifies weak $F$-matroid structures on $M$. The unit group of $k_Mw$ can be canonically identified with the Tutte group of $M$. We call the sub-pasture $k_Mf$ of $k_Mw$ generated by ``cross-ratios' the foundation of $M$,. It parametrizes rescaling classes of weak $F$-matroid structures on $M$, and its unit group is coincides with the inner Tutte group of $M$. We show that a matroid $M$ is regular if and only if its foundation is the regular partial field, and a non-regular matroid $M$ is binary if and only if its foundation is the field with two elements. This yields a new proof of the fact that a matroid is regular if and only if it is both binary and orientable.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.