Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Approximation Error in Bayesian Non-negative Matrix Factorization (1809.02963v4)

Published 9 Sep 2018 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: Non-negative matrix factorization (NMF) is a knowledge discovery method that is used in many fields. Variational inference and Gibbs sampling methods for it are also wellknown. However, the variational approximation error has not been clarified yet, because NMF is not statistically regular and the prior distribution used in variational Bayesian NMF (VBNMF) has zero or divergence points. In this paper, using algebraic geometrical methods, we theoretically analyze the difference in negative log evidence (a.k.a. free energy) between VBNMF and Bayesian NMF, i.e., the Kullback-Leibler divergence between the variational posterior and the true posterior. We derive an upper bound for the learning coefficient (a.k.a. the real log canonical threshold) in Bayesian NMF. By using the upper bound, we find a lower bound for the approximation error, asymptotically. The result quantitatively shows how well the VBNMF algorithm can approximate Bayesian NMF; the lower bound depends on the hyperparameters and the true nonnegative rank. A numerical experiment demonstrates the theoretical result.

Citations (6)

Summary

We haven't generated a summary for this paper yet.