Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Anyon exclusions statistics on surfaces with gapped boundaries (1809.02604v2)

Published 7 Sep 2018 in cond-mat.str-el, hep-th, math-ph, and math.MP

Abstract: An anyon exclusion statistics, which generalizes the Bose-Einstein and Fermi-Dirac statistics of bosons and fermions, was proposed by Haldane[1]. The relevant past studies had considered only anyon systems without any physical boundary but boundaries often appear in real-life materials. When fusion of anyons is involved, certain pseudo-species' anyons appear in the exotic statistical weights of non-Abelian anyon systems; however, the meaning and significance of pseudo-species remains an open problem. In this paper, we propose an extended anyon exclusion statistics on surfaces with gapped boundaries, introducing mutual exclusion statistics between anyons as well as the boundary components. Motivated by Refs. [2, 3], we present a formula for the statistical weight of many-anyon states obeying the proposed statistics. We develop a systematic basis construction for non-Abelian anyons on any Riemann surfaces with gapped boundaries. From the basis construction, we have a standard way to read off a canonical set of statistics parameters and hence write down the extended statistical weight of the anyon system being studied. The basis construction reveals the meaning of pseudo-species. A pseudo-species has differentexcitation' modes, each corresponding to an anyon species. The `excitation' modes of pseudo-species corresponds to good quantum numbers of subsystems of a non-Abelian anyon system. This is important because often (e.g., in topological quantum computing) we may be concerned about only the entanglement between such subsystems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. F. D. M. Haldane, Physical Review Letters 67, 937 (1991).
  2. Y.-S. Wu, Physical Review Letters 73, 922 (1994).
  3. A. Kitaev, Annals of Physics 303, 2 (2003).
  4. A. Stern and B. I. Halperin, Physical Review Letters 96, 016802 (2006).
  5. S. Guruswamy and K. Schoutens, Nuclear Physics B 556, 530 (1999), arXiv:9903045 [cond-mat] .
  6. A. Kitaev, Annals of Physics 321, 2 (2006).
  7. L.-Y. Hung and Y. Wan, Phys. Rev. Lett. 114, 076401 (2015), arXiv:1408.0014 .
  8. A. Kitaev and L. Kong, Communications in Mathematical Physics 313, 351 (2012).
  9. M. Levin, Physical Review X 3, 021009 (2013), arXiv:1301.7355 .
  10. L.-Y. Hung and Y. Wan, Physical Review B 87, 195103 (2013).
  11. M. Levin and X.-g. Wen, Physical Review B 71, 21 (2005), arXiv:0404617 [cond-mat] .
  12. M. Levin and Z.-C. Gu, Physical Review B 86, 115109 (2012), arXiv:1202.3120 .
  13. L. Kong, Nuclear Physics B 886, 436 (2014), arXiv:1307.8244 .
  14. P. Mitra, Physics Letters B 313, 41 (1993).
  15. M. T. Batchelor and X.-W. Guan, Physical Review B 74, 195121 (2006).
  16. M. T. Batchelor, X.-W. Guan, and N. Oelkers, Physical Review Letters 96, 210402 (2006).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets