Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
34 tokens/sec
GPT-4o
83 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
471 tokens/sec
Kimi K2 via Groq Premium
203 tokens/sec
2000 character limit reached

Eigenvalue analogy for confidence estimation in item-based recommender systems (1809.02052v2)

Published 31 Aug 2018 in cs.IR, cs.LG, and stat.ML

Abstract: Item-item collaborative filtering (CF) models are a well known and studied family of recommender systems, however current literature does not provide any theoretical explanation of the conditions under which item-based recommendations will succeed or fail. We investigate the existence of an ideal item-based CF method able to make perfect recommendations. This CF model is formalized as an eigenvalue problem, where estimated ratings are equivalent to the true (unknown) ratings multiplied by a user-specific eigenvalue of the similarity matrix. Preliminary experiments show that the magnitude of the eigenvalue is proportional to the accuracy of recommendations for that user and therefore it can provide reliable measure of confidence.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.