Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three-Stage Speaker Verification Architecture in Emotional Talking Environments (1809.01721v1)

Published 3 Sep 2018 in cs.SD, cs.AI, and eess.AS

Abstract: Speaker verification performance in neutral talking environment is usually high, while it is sharply decreased in emotional talking environments. This performance degradation in emotional environments is due to the problem of mismatch between training in neutral environment while testing in emotional environments. In this work, a three-stage speaker verification architecture has been proposed to enhance speaker verification performance in emotional environments. This architecture is comprised of three cascaded stages: gender identification stage followed by an emotion identification stage followed by a speaker verification stage. The proposed framework has been evaluated on two distinct and independent emotional speech datasets: in-house dataset and Emotional Prosody Speech and Transcripts dataset. Our results show that speaker verification based on both gender information and emotion information is superior to each of speaker verification based on gender information only, emotion information only, and neither gender information nor emotion information. The attained average speaker verification performance based on the proposed framework is very alike to that attained in subjective assessment by human listeners.

Citations (9)

Summary

We haven't generated a summary for this paper yet.