Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EEG-Based Driver Drowsiness Estimation Using Convolutional Neural Networks (1809.00929v1)

Published 8 Aug 2018 in cs.HC and cs.LG

Abstract: Deep learning, including convolutional neural networks (CNNs), has started finding applications in brain-computer interfaces (BCIs). However, so far most such approaches focused on BCI classification problems. This paper extends EEGNet, a 3-layer CNN model for BCI classification, to BCI regression, and also utilizes a novel spectral meta-learner for regression (SMLR) approach to aggregate multiple EEGNets for improved performance. Our model uses the power spectral density (PSD) of EEG signals as the input. Compared with raw EEG inputs, the PSD inputs can reduce the computational cost significantly, yet achieve much better regression performance. Experiments on driver drowsiness estimation from EEG signals demonstrate the outstanding performance of our approach.

Citations (16)

Summary

We haven't generated a summary for this paper yet.