Evaluating Fast Adaptability of Neural Networks for Brain-Computer Interface (2404.15350v1)
Abstract: Electroencephalography (EEG) classification is a versatile and portable technique for building non-invasive Brain-computer Interfaces (BCI). However, the classifiers that decode cognitive states from EEG brain data perform poorly when tested on newer domains, such as tasks or individuals absent during model training. Researchers have recently used complex strategies like Model-agnostic meta-learning (MAML) for domain adaptation. Nevertheless, there is a need for an evaluation strategy to evaluate the fast adaptability of the models, as this characteristic is essential for real-life BCI applications for quick calibration. We used motor movement and imaginary signals as input to Convolutional Neural Networks (CNN) based classifier for the experiments. Datasets with EEG signals typically have fewer examples and higher time resolution. Even though batch-normalization is preferred for Convolutional Neural Networks (CNN), we empirically show that layer-normalization can improve the adaptability of CNN-based EEG classifiers with not more than ten fine-tuning steps. In summary, the present work (i) proposes a simple strategy to evaluate fast adaptability, and (ii) empirically demonstrate fast adaptability across individuals as well as across tasks with simple transfer learning as compared to MAML approach.
- H. Altaheri, G. Muhammad, M. Alsulaiman, S. U. Amin, G. A. Altuwaijri, W. Abdul, M. A. Bencherif, and M. Faisal, “Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: a review,” Neural Computing and Applications, vol. 35, no. 20, pp. 14 681–14 722, Jul 2023. [Online]. Available: https://doi.org/10.1007/s00521-021-06352-5
- A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (eeg) classification tasks: a review,” Journal of Neural Engineering, vol. 16, no. 3, p. 031001, apr 2019. [Online]. Available: https://dx.doi.org/10.1088/1741-2552/ab0ab5
- V. Jayaram, M. Alamgir, Y. Altun, B. Schölkopf, and M. Grosse-Wentrup, “Transfer learning in brain-computer interfaces,” IEEE Computational Intelligence Magazine, vol. 11, no. 1, pp. 20–31, 2016.
- D. Zhang, K. Chen, D. Jian, and L. Yao, “Motor imagery classification via temporal attention cues of graph embedded eeg signals,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 9, pp. 2570–2579, 2020.
- S. U. Amin, M. Alsulaiman, G. Muhammad, M. A. Bencherif, and M. S. Hossain, “Multilevel weighted feature fusion using convolutional neural networks for eeg motor imagery classification,” IEEE Access, vol. 7, pp. 18 940–18 950, 2019.
- X. Zhu, P. Li, C. Li, D. Yao, R. Zhang, and P. Xu, “Separated channel convolutional neural network to realize the training free motor imagery bci systems,” Biomedical Signal Processing and Control, vol. 49, pp. 396–403, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809418303264
- K. Zhang, N. Robinson, S.-W. Lee, and C. Guan, “Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network,” Neural Networks, vol. 136, pp. 1–10, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608020304305
- S. Pérez-Velasco, E. Santamaría-Vázquez, V. Martínez-Cagigal, D. Marcos-Martínez, and R. Hornero, “Eegsym: Overcoming inter-subject variability in motor imagery based bcis with deep learning,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1766–1775, 2022.
- C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ser. ICML’17. JMLR.org, 2017, p. 1126–1135.
- D. Li, P. Ortega, X. Wei, and A. Faisal, “Model-agnostic meta-learning for eeg motor imagery decoding in brain-computer-interfacing,” in 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), 2021, pp. 527–530.
- K. Miyamoto, H. Tanaka, and S. Nakamura, “Meta-learning for emotion prediction from eeg while listening to music,” in Companion Publication of the 2021 International Conference on Multimodal Interaction, ser. ICMI ’21 Companion. New York, NY, USA: Association for Computing Machinery, 2021, p. 324–328. [Online]. Available: https://doi.org/10.1145/3461615.3486569
- N. Banluesombatkul, P. Ouppaphan, P. Leelaarporn, P. Lakhan, B. Chaitusaney, N. Jaimchariyatam, E. Chuangsuwanich, W. Chen, H. Phan, N. Dilokthanakul, and T. Wilaiprasitporn, “Metasleeplearner: A pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using meta-learning,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 1949–1963, 2021.
- L. Chen, Z. Yu, and J. Yang, “Spd-cnn: A plain cnn-based model using the symmetric positive definite matrices for cross-subject eeg classification with meta-transfer-learning,” Frontiers in Neurorobotics, vol. 16, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.2022.958052
- J. Li, F. Wang, H. Huang, F. Qi, and J. Pan, “A novel semi-supervised meta learning method for subject-transfer brain–computer interface,” Neural Networks, vol. 163, pp. 195–204, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608023001740
- V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5, p. 056013, jul 2018. [Online]. Available: https://dx.doi.org/10.1088/1741-2552/aace8c
- J. Xie, J. Zhang, J. Sun, Z. Ma, L. Qin, G. Li, H. Zhou, and Y. Zhan, “A transformer-based approach combining deep learning network and spatial-temporal information for raw eeg classification,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2126–2136, 2022.
- D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, “Bendr: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of eeg data,” Frontiers in Human Neuroscience, vol. 15, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnhum.2021.653659
- H.-Y. S. Chien, H. Goh, C. M. Sandino, and J. Y. Cheng, “Maeeg: Masked auto-encoder for eeg representation learning,” in NeurIPS Workshop, 2022. [Online]. Available: https://arxiv.org/abs/2211.02625
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
- L. Long, “Maml-pytorch implementation,” https://github.com/dragen1860/MAML-Pytorch, 2018.
- A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals,” circulation, vol. 101, no. 23, pp. e215–e220, 2000.
- A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. S. Hämäläinen, “MEG and EEG data analysis with MNE-Python,” Frontiers in Neuroscience, vol. 7, no. 267, pp. 1–13, 2013.
- J. L. Ulloa, “The control of movements via motor gamma oscillations,” Frontiers in Human Neuroscience, vol. 15, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnhum.2021.787157