Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optical Flow Super-Resolution Based on Image Guidence Using Convolutional Neural Network (1809.00588v1)

Published 3 Sep 2018 in cs.CV

Abstract: The convolutional neural network model for optical flow estimation usually outputs a low-resolution(LR) optical flow field. To obtain the corresponding full image resolution,interpolation and variational approach are the most common options, which do not effectively improve the results. With the motivation of various convolutional neural network(CNN) structures succeeded in single image super-resolution(SISR) task, an end-to-end convolutional neural network is proposed to reconstruct the high resolution(HR) optical flow field from initial LR optical flow with the guidence of the first frame used in optical flow estimation. Our optical flow super-resolution(OFSR) problem differs from the general SISR problem in two main aspects. Firstly, the optical flow includes less texture information than image so that the SISR CNN structures can't be directly used in our OFSR problem. Secondly, the initial LR optical flow data contains estimation error, while the LR image data for SISR is generally a bicubic downsampled, blurred, and noisy version of HR ground truth. We evaluate the proposed approach on two different optical flow estimation mehods and show that it can not only obtain the full image resolution, but generate more accurate optical flow field (Accuracy improve 15% on FlyingChairs, 13% on MPI Sintel) with sharper edges than the estimation result of original method.

Summary

We haven't generated a summary for this paper yet.