Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Video Super-Resolution using HR Optical Flow Estimation (2001.02129v1)

Published 6 Jan 2020 in cs.CV

Abstract: Video super-resolution (SR) aims at generating a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The key challenge for video SR lies in the effective exploitation of temporal dependency between consecutive frames. Existing deep learning based methods commonly estimate optical flows between LR frames to provide temporal dependency. However, the resolution conflict between LR optical flows and HR outputs hinders the recovery of fine details. In this paper, we propose an end-to-end video SR network to super-resolve both optical flows and images. Optical flow SR from LR frames provides accurate temporal dependency and ultimately improves video SR performance. Specifically, we first propose an optical flow reconstruction network (OFRnet) to infer HR optical flows in a coarse-to-fine manner. Then, motion compensation is performed using HR optical flows to encode temporal dependency. Finally, compensated LR inputs are fed to a super-resolution network (SRnet) to generate SR results. Extensive experiments have been conducted to demonstrate the effectiveness of HR optical flows for SR performance improvement. Comparative results on the Vid4 and DAVIS-10 datasets show that our network achieves the state-of-the-art performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Longguang Wang (48 papers)
  2. Yulan Guo (89 papers)
  3. Li Liu (311 papers)
  4. Zaiping Lin (17 papers)
  5. Xinpu Deng (4 papers)
  6. Wei An (40 papers)
Citations (130)

Summary

We haven't generated a summary for this paper yet.