Ordinary planes, coplanar quadruples, and space quartics (1808.10847v3)
Abstract: An ordinary plane of a finite set of points in real 3-space with no three collinear is a plane intersecting the set in exactly three points. We prove a structure theorem for sets of points spanning few ordinary planes. Our proof relies on Green and Tao's work on ordinary lines in the plane, combined with classical results on space quartic curves and non-generic projections of curves. This gives an alternative approach to Ball's recent results on ordinary planes, as well as extending them. We also give bounds on the number of coplanar quadruples determined by a finite set of points on a rational space quartic curve in complex 3-space, answering a question of Raz, Sharir and De Zeeuw [Israel J. Math. 227 (2018)].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.