Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sup-norm adaptive simultaneous drift estimation for ergodic diffusions (1808.10660v1)

Published 31 Aug 2018 in math.ST and stat.TH

Abstract: We consider the question of estimating the drift and the invariant density for a large class of scalar ergodic diffusion processes, based on continuous observations, in $\sup$-norm loss. The unknown drift $b$ is supposed to belong to a nonparametric class of smooth functions of unknown order. We suggest an adaptive approach which allows to construct drift estimators attaining minimax optimal $\sup$-norm rates of convergence. In addition, we prove a Donsker theorem for the classical kernel estimator of the invariant density and establish its semiparametric efficiency. Finally, we combine both results and propose a fully data-driven bandwidth selection procedure which simultaneously yields both a rate-optimal drift estimator and an asymptotically efficient estimator of the invariant density of the diffusion. Crucial tool for our investigation are uniform exponential inequalities for empirical processes of diffusions.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.