Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tree-Based Bayesian Treatment Effect Analysis (1808.09507v1)

Published 28 Aug 2018 in stat.ME

Abstract: The inclusion of the propensity score as a covariate in Bayesian regression trees for causal inference can reduce the bias in treatment effect estimations, which occurs due to the regularization-induced confounding phenomenon. This study advocate for the use of the propensity score by evaluating it under a full-Bayesian variable selection setting, and the use of Individual Conditional Expectation Plots, which is a graphical tool that can improve treatment effect analysis on tree-based Bayesian models and others "black box" models. The first one, even if poorly estimated, can lead to bias reduction on the estimated treatment effects, while the latter can be used to found groups of individuals which have different responses to the applied treatment, and analyze the impact of each variable in the estimated treatment effect.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.